skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Myunghee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 12, 2026
  2. Human–machine interfaces (HMI) are currently a trendy and rapidly expanding area of research. Interestingly, the human user does not readily observe the interface between humans and machines. Instead, interactions between the machine and electrical signals from the user's body are obscured by complex control algorithms. The result is effectively a one-way street, wherein data is only transmitted from human to machine. Thus, a gap remains in the literature: how can information be effectively conveyed to the user to enable mutual understanding between humans and machines? Here, this paper reviews recent advancements in biosignal-integrated wearable robotics, with a particular emphasis on “visualization”—the presentation of relevant data, statistics, and visual feedback to the user. This review article covers various signals of interest, such as electroencephalograms and electromyograms, and explores novel sensor architectures and key materials. Recent developments in wearable robotics are examined from control and mechanical design perspectives. Additionally, we discuss current visualization methods and outline the field's future direction. While much of the HMI field focuses on biomedical and healthcare applications, such as rehabilitation of spinal cord injury and stroke patients, this paper also covers less common applications in manufacturing, defense, and other domains. 
    more » « less
  3. Introduction: Recent studies found that wearable exoskeletons can reduce physical effort and fatigue during squatting. In particular, subject-specific assistance helped to significantly reduce physical effort, shown by reduced metabolic cost, using human-in-the-loop optimization of the exoskeleton parameters. However, measuring metabolic cost using respiratory data has limitations, such as long estimation times, presence of noise, and user discomfort. A recent study suggests that foot contact forces can address those challenges and be used as an alternative metric to the metabolic cost to personalize wearable robot assistance during walking. Methods: In this study, we propose that foot center of pressure (CoP) features can be used to estimate the metabolic cost of squatting using a machine learning method. Five subjects’ foot pressure and metabolic cost data were collected as they performed squats with an ankle exoskeleton at different assistance conditions in our prior study. In this study, we extracted statistical features from the CoP squat trajectories and fed them as input to a random forest model, with the metabolic cost as the output. Results: The model predicted the metabolic cost with a mean error of 0.55 W/kg on unseen test data, with a high correlation (r = 0.89, p < 0.01) between the true and predicted cost. The features of the CoP trajectory in the medial-lateral direction of the foot (xCoP), which relate to ankle eversion-inversion, were found to be important and highly correlated with metabolic cost. Conclusion: Our findings indicate that increased ankle eversion (outward roll of the ankle), which reflects a suboptimal squatting strategy, results in higher metabolic cost. Higher ankle eversion has been linked with the etiology of chronic lower limb injuries. Hence, a CoP-based cost function in human-in-the-loop optimization could offer several advantages, such as reduced estimation time, injury risk mitigation, and better user comfort. 
    more » « less
  4. Abstract Squatting is an intensive activity routinely performed in the workplace to lift and lower loads. The effort to perform a squat can decrease using an exoskeleton that considers individual worker’s differences and assists them with a customized solution, namely, personalized assistance. Designing such an exoskeleton could be improved by understanding how the user’s muscle activity changes when assistance is provided. This study investigated the change in the muscle recruitment and activation pattern when personalized assistance was provided. The personalized assistance was provided by an ankle–foot exoskeleton during squatting and we compared its effect with that of the no-device and unpowered exoskeleton conditions using previously collected data. We identified four main muscle recruitment strategies across ten participants. One of the strategies mainly used quadriceps muscles, and the activation level corresponding to the strategy was reduced under exoskeleton assistance compared to the no-device and unpowered conditions. These quadriceps dominant synergy and rectus femoris activations showed reasonable correlations (r = 0.65, 0.59) to the metabolic cost of squatting. These results indicate that the assistance helped reduce quadriceps activation, and thus, the metabolic cost of squatting. These outcomes suggest that the muscle recruitment and activation patterns could be used to design an exoskeleton and training methods. 
    more » « less
  5. The foot center of pressure (COP) variability is an important indicator of balance, particularly relevant for rehabilitation and training using wearable lower limb exoskeletons. This study aimed to evaluate the effectiveness of our exoskeleton in assisting squatting motion using the COP variability as a metric. Six human subjects performed alternate squatting and standing movements while their foot pressure and COP trajectories were recorded using insole pressure sensors. The exercises were performed under three conditions: i) no device, ii) unpowered device, and iii) device with optimal stiffness. Results showed that the variability of the COP trajectory in the anterior-posterior direction of the foot during squatting tended to be lower for the optimal stiffness condition than the no device and unpowered device conditions, indicating the potential usefulness of the device in improving balance during squatting. This study has implications for human-inthe-loop optimization and balance control of the exoskeleton based on COP. 
    more » « less
  6. Abstract Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath information. The physical effort represents the work hardness used to optimize wearable robotic systems. Thus, personalization and rapid optimization of the effort are critical. Although respirometry is the gold standard for estimating metabolic costs, this method requires a heavy, bulky, and rigid system, limiting the system’s field deployability. Here, this paper reports a soft, flexible bioelectronic system that integrates a wearable ankle-foot exoskeleton, used to estimate metabolic costs and physical effort, demonstrating the potential for real-time wearable robot adjustments based on biofeedback. Data from a set of activities, including walking, running, and squatting with the biopatch and exoskeleton, determines the relationship between metabolic costs and heart rate variability root mean square of successive differences (HRV-RMSSD) (R = −0.758). Collectively, the exoskeleton-integrated wearable system shows potential to develop a field-deployable exoskeleton platform that can measure wireless real-time physiological signals. 
    more » « less